IndexCalcUnit.java 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. package com.sundata.internalevaluation.calc.calcUnit;
  2. import cn.hutool.core.convert.Convert;
  3. import cn.hutool.core.util.StrUtil;
  4. import cn.hutool.extra.spring.SpringUtil;
  5. import com.sundata.common.exception.BusinessException;
  6. import com.sundata.internalevaluation.calc.model.CalcException;
  7. import com.sundata.internalevaluation.calc.model.CalcResult;
  8. import com.sundata.internalevaluation.calc.model.CalcUnit;
  9. import com.sundata.internalevaluation.calc.model.finals.CalcType;
  10. import com.sundata.internalevaluation.calc.util.CalciteUtil;
  11. import com.sundata.internalevaluation.configuration.model.DataSetModel;
  12. import com.sundata.internalevaluation.configuration.model.IndexModel;
  13. import com.sundata.internalevaluation.configuration.model.IndexSourceModel;
  14. import com.sundata.internalevaluation.configuration.service.DataSetService;
  15. import com.sundata.internalevaluation.configuration.service.IndexConfigService;
  16. import com.sundata.internalevaluation.script.ScriptUtil;
  17. import com.sundata.internalevaluation.script.TemplateUtil;
  18. import org.apache.calcite.schema.impl.AbstractSchema;
  19. import org.slf4j.Logger;
  20. import org.slf4j.LoggerFactory;
  21. import java.sql.SQLException;
  22. import java.util.*;
  23. import java.util.concurrent.atomic.AtomicInteger;
  24. import java.util.stream.Collectors;
  25. public class IndexCalcUnit extends CalcUnit {
  26. private final IndexModel indexConfigModel;
  27. private static final Logger log = LoggerFactory.getLogger(IndexCalcUnit.class);
  28. // 接收表集
  29. private Set<String> tableSet = null;
  30. /**
  31. * 创建数据单元的绝对对象,对象必须包含如下参数
  32. *
  33. * @param calcCode 计算对象编号
  34. * @param calcName 计算对象名称
  35. * @param initContext 计算单元初始化参数
  36. */
  37. public IndexCalcUnit(String calcCode, String calcName, Map<String, Object> initContext, IndexModel indexConfigModel) {
  38. super(calcCode, calcName, CalcType.INDEX, initContext);
  39. this.indexConfigModel = indexConfigModel;
  40. }
  41. /**
  42. * 判断是否已经计算过数据了
  43. *
  44. * @param calculateInstanceNumber 计算流水号
  45. * @return 是否计算过 true 计算过 false 没有计算过
  46. */
  47. @Override
  48. public boolean isCalcFinished(String calculateInstanceNumber) {
  49. // TODO 计算是否已经计算
  50. return false;
  51. // return DataImages.indexCalcUnitHashMap.containsKey(calculateInstanceNumber) && DataImages.indexCalcUnitHashMap.get(calculateInstanceNumber).stream().anyMatch(a -> a.getCalcCode().equals(this.getCalcCode()));
  52. }
  53. /**
  54. * 初始化计算结果的方法,如果已经计算过,在实现过程中,应当在此方法中根据计算流水号重新初始化 resultContext 结果对象,为其他依赖对象做准备
  55. * 若明明计算过本单元但再次计算时没有初始化该对象,则计算依赖出现问题无法定位与处理
  56. *
  57. * @param calculateInstanceNumber 计算流水号
  58. */
  59. @Override
  60. public void initResultContext(String calculateInstanceNumber) {
  61. // TODO 初始化
  62. // List<IndexCalcUnit> indexCalcUnits = new ArrayList<>();
  63. //// List<IndexCalcUnit> indexCalcUnits = DataImages.indexCalcUnitHashMap.get(calculateInstanceNumber);
  64. // // 筛选并查找对象,如果找不到则报错
  65. // if (indexCalcUnits.stream().noneMatch(a -> a.getCalcCode().equals(this.getCalcCode()))) {
  66. // throw new CalcException(calculateInstanceNumber, StrUtil.format("无法找到已计算完成的结果,计算单元编号:{},计算流水号为:{}。", this.getCalcCode(), calculateInstanceNumber));
  67. // }
  68. // this.setResultContext(indexCalcUnits.stream().filter(a -> a.getCalcCode().equals(this.getCalcCode())).findFirst().get().getResultContext());
  69. }
  70. /**
  71. * 根据节点配置获取源节点;
  72. *
  73. * @return 所有源头节点
  74. */
  75. @Override
  76. public List<CalcUnit> getSourceCalcUnits() {
  77. // TODO 获取源头节点
  78. DataSetService dataSetService = SpringUtil.getBean(DataSetService.class);
  79. IndexConfigService indexConfigService = SpringUtil.getBean(IndexConfigService.class);
  80. List<IndexSourceModel> selectList = indexConfigService.getIndexSourceList(this.indexConfigModel);
  81. // 定义存放数据集和其他指标的集合
  82. List<IndexModel> indexList = new ArrayList<>();
  83. List<DataSetModel> dataSetList = new ArrayList<>();
  84. // 查询个指标编号和数据集对应的数据
  85. for ( IndexSourceModel m : selectList) {
  86. if ("DATASET".equals(m.getDataSourceType())) {
  87. DataSetModel conditionModel = new DataSetModel();
  88. conditionModel.setDataSetNo(m.getDataSetNo());
  89. DataSetModel datasetModel = dataSetService.selectDetailData(conditionModel);
  90. dataSetList.add(datasetModel);
  91. } else if ("INDEX".equals(m.getDataSourceType())) {
  92. IndexModel conditionModel = new IndexModel();
  93. conditionModel.setIndexNo(m.getOtherIndexNo());
  94. IndexModel indexConfigModel = indexConfigService.selectDetailData(conditionModel);
  95. indexList.add(indexConfigModel);
  96. }
  97. }
  98. List<CalcUnit> indexCalcList = null;
  99. List<CalcUnit> dataSetCalcList = null;
  100. List<CalcUnit> resultCalcMap = new ArrayList<>();
  101. // 数据源头节点生成
  102. if (!indexList.isEmpty()) {
  103. indexCalcList = indexList.stream().map(indexConfigModel -> new IndexCalcUnit
  104. (indexConfigModel.getIndexNo(),indexConfigModel.getIndexName(),Map.of(),indexConfigModel)).collect(Collectors.toList());
  105. }
  106. if (!dataSetList.isEmpty()) {
  107. dataSetCalcList = dataSetList.stream().map(dataSetModel -> new DataSetCalcUnit
  108. (dataSetModel.getDataSetNo(),dataSetModel.getDataSetName(),Map.of(),dataSetModel)).collect(Collectors.toList());
  109. }
  110. // 结果封装
  111. if (null != indexCalcList) {
  112. resultCalcMap.addAll(indexCalcList);
  113. }
  114. if (null != dataSetCalcList) {
  115. resultCalcMap.addAll(dataSetCalcList);
  116. }
  117. // 返回所有源头节点
  118. return resultCalcMap;
  119. }
  120. /**
  121. * 计算之后的方法,可实现为空
  122. *
  123. * @param context 计算参数过程数据
  124. */
  125. @Override
  126. public void afterCalc(Map<String, Object> context) {
  127. log.debug("计算之后的参数结构:{}",context);
  128. }
  129. /**
  130. * 计算之前,可实现空
  131. *
  132. * @param context 计算参数过程数据
  133. */
  134. @Override
  135. public void beforeCalc(Map<String, Object> context) {
  136. log.debug("计算之前的参数结构:{}",context);
  137. }
  138. /**
  139. * 必须实现的主体计算内容
  140. *
  141. * @param context 节点计算参数清单
  142. * @param sourceResults 整个计算过程中的节点结果
  143. */
  144. @Override
  145. public void calc(final CalcResult<String, Object> thisResult, String calculateInstanceNumber, Map<String, Object> context, Map<CalcUnit, CalcResult<String, Object>> sourceResults) {
  146. //
  147. log.info("当前计算节点为:[{}-{}-{}],计算流水号为:{}", this.getCalcType(), this.getCalcCode(), this.getCalcName(), calculateInstanceNumber);
  148. // TODO 实际的计算过程
  149. // 记录数据集出现次数
  150. AtomicInteger dataSetNumber = new AtomicInteger();
  151. // 记录其他指标出现次数
  152. AtomicInteger indexNumber = new AtomicInteger();
  153. // 声明只存放指标源头节点变量
  154. Map<String, Object> indexResult = new HashMap<>();
  155. // 声明只存放所有数据集源头节点变量
  156. Map<String, AbstractSchema> dataSetResult = new HashMap<>();
  157. // 遍历结果集
  158. sourceResults.forEach((calcUnit,result) -> {
  159. // 数据集
  160. if ( calcUnit instanceof DataSetCalcUnit dataSetCalcUnit){
  161. if(dataSetCalcUnit.getCalcType() == CalcType.DATASET){
  162. // 记录记过集次数
  163. dataSetNumber.getAndIncrement();
  164. // 将源头节点的返回值取出
  165. // dataSetResult.putAll(result);
  166. String calcCode = calcUnit.getCalcCode();
  167. Object schemeObj = result.get(calcCode);
  168. if (schemeObj instanceof AbstractSchema schema) {
  169. dataSetResult.put(calcCode,schema);
  170. } else {
  171. String errorMsg = StrUtil.format("数据集-[{}({})]-返回的计算结果不是AbstractSchema类型",calcUnit.getCalcName(),calcCode);
  172. log.error(errorMsg);
  173. throw new CalcException(errorMsg);
  174. }
  175. }
  176. }
  177. // 其他指标
  178. if( calcUnit instanceof IndexCalcUnit indexCalcUnit){
  179. if(indexCalcUnit.getCalcType() == CalcType.INDEX){
  180. // 记录指标出现次数
  181. indexNumber.getAndIncrement();
  182. // 记录指标节点的返回值
  183. indexResult.putAll(result);
  184. }
  185. }
  186. });
  187. // 定义指标结果变量
  188. Object indexCalcResult = null;
  189. // 获取指标计算逻辑
  190. String calcLogic = indexConfigModel.getIndexLogic();
  191. if (dataSetNumber.get() > 0 && indexNumber.get() == 0){
  192. // 如果数据集的数量大于0(只依赖数据集)
  193. indexCalcResult = doExecuteSql(dataSetResult,calcLogic);
  194. } else if(dataSetNumber.get() == 0 && indexNumber.get() > 0){
  195. // 如果指标的数量大于0(只依赖其他指标)
  196. // 执行公式,结果放入结果集
  197. indexCalcResult = ScriptUtil.executeScript(indexConfigModel.getIndexNo(),calcLogic,indexResult);
  198. } else if (dataSetNumber.get() > 0 && indexNumber.get() >0) {
  199. // 同时具有指标和数据集
  200. // 先将sql中指标公式替换掉,再将得到的sql执行
  201. String editSql = TemplateUtil.execute(indexConfigModel.getIndexNo(),calcLogic,indexResult);
  202. // 执行拿结果
  203. indexCalcResult = doExecuteSql(dataSetResult,editSql);
  204. } else {
  205. // 既不依赖其他指标,也不依赖数据集
  206. // 执行公式,结果放入结果集
  207. indexCalcResult = ScriptUtil.executeScript(indexConfigModel.getIndexNo(),calcLogic,indexResult);
  208. }
  209. // *********************** 处理指标结果为null的情况
  210. if (null != indexCalcResult) {
  211. thisResult.put(this.getCalcCode(),indexCalcResult);
  212. } else {
  213. String defaultValueType = this.indexConfigModel.getDefaultValueType();
  214. String defaultValue = this.indexConfigModel.getDefaultValue();
  215. indexCalcResult = getDefaultValue(defaultValue,defaultValueType);
  216. thisResult.put(this.getCalcCode(),indexCalcResult);
  217. }
  218. }
  219. /**
  220. * 执行sql获取结果
  221. * @param dataSetResult 数据集
  222. * @param logic 指标计算逻辑
  223. * @return 计算结果
  224. */
  225. private Object doExecuteSql(Map<String,AbstractSchema> dataSetResult,String logic) {
  226. // 执行sql的工具类实例
  227. CalciteUtil finalInstance;
  228. try {
  229. // 创建示例
  230. CalciteUtil instance = CalciteUtil.getInstance();
  231. // 添加域
  232. dataSetResult.forEach(instance::addSchema);
  233. finalInstance = instance;
  234. } catch (SQLException e) {
  235. log.error(e.getMessage());
  236. throw new BusinessException(e.getMessage(),e);
  237. }
  238. try {
  239. // 执行sql返回姐果
  240. return finalInstance.doExecute(logic);
  241. } catch (SQLException e) {
  242. throw new RuntimeException(e);
  243. }
  244. }
  245. /**
  246. * 获取默认值
  247. * @param defaultValue 默认值
  248. * @param defaultValueType 默认值类型
  249. * @return 转化后值
  250. */
  251. private Object getDefaultValue(String defaultValue, String defaultValueType) {
  252. Object castValue = null;
  253. if (StrUtil.isNotBlank(defaultValue) && StrUtil.isNotBlank(defaultValueType)) {
  254. try {
  255. switch (defaultValueType) {
  256. case "INT":
  257. castValue = Convert.toInt(defaultValue);
  258. break;
  259. case "STRING":
  260. castValue = defaultValue;
  261. break;
  262. case "BOOLEAN":
  263. castValue = Convert.toBool(defaultValue);
  264. break;
  265. case "BIGDECIMAL":
  266. castValue = Convert.toBigDecimal(defaultValue);
  267. break;
  268. }
  269. if (null ==castValue) {
  270. String error = StrUtil.format("指标-[{}({})]-默认值转换失败,期望类型为[{}],待转换的值为[{}]。", getCalcName(),getCalcCode(),defaultValueType,defaultValue);
  271. log.error(error);
  272. throw new ClassCastException(error);
  273. }
  274. } catch (ClassCastException e) {
  275. throw new BusinessException(e.getMessage());
  276. }
  277. } else {
  278. String error = StrUtil.format("指标-[{}({})]-计算结果为null,且未设置默认值类型或默认值。", getCalcName(),getCalcCode());
  279. log.error(error);
  280. throw new BusinessException(error);
  281. }
  282. return castValue;
  283. }
  284. }